12 research outputs found

    A posteriori error analysis of an augmented mixed method for the Navier-Stokes equations with nonlinear viscosity

    Get PDF
    In this work we develop the a posteriori error analysis of an augmented mixed finite element method for the 2D and 3D versions of the Navier-Stokes equations when the viscosity depends nonlinearly on the module of the velocity gradient. Two different reliable and efficient residual-based a posteriori error estimators for this problem on arbitrary (convex or non-convex) polygonal and polyhedral regions are derived. Our analysis of reliability of the proposed estimators draws mainly upon the global inf-sup condition satisfied by a suitable linearization of the continuous formulation, an application of Helmholtz decomposition, and the local approximation properties of the Raviart-Thomas and Clément interpolation operators. In addition, differently from previous approaches for augmented mixed formulations, the boundedness of the Clément operator plays now an interesting role in the reliability estimate. On the other hand, inverse and discrete inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are utilized to show their efficiency. Finally, several numerical results are provided to illustrate the good performance of the augmented mixed method, to confirm the aforementioned properties of the a posteriori error estimators, and to show the behaviour of the associated adaptive algorithm.Centre for Mathematical Modeling (Universidad de Chile)Centro de Investigación en Ingeniería Matemática (Universidad de Concepción)Comisión Nacional de Investigación Científica y Tecnológica (Chile)Swiss National Science FoundationElsevier Mathematical Sciences Sponsorship FundMinistry of Education, Youth and Sports of the Czech Republi

    A mixed finite element method for Darcy’s equations with pressure dependent porosity

    Get PDF
    In this work we develop the a priori and a posteriori error analyses of a mixed finite element method for Darcy’s equations with porosity depending exponentially on the pressure. A simple change of variable for this unknown allows to transform the original nonlinear problem into a linear one whose dual-mixed variational formulation falls into the frameworks of the generalized linear saddle point problems and the fixed point equations satisfied by an affine mapping. According to the latter, we are able to show the well-posedness of both the continuous and discrete schemes, as well as the associated Cea estimate, by simply applying a suitable combination of the classical Babuska-Brezzi theory and the Banach fixed point Theorem. In particular, given any integer k ≥ 0, the stability of the Galerkin scheme is guaranteed by employing Raviart-Thomas elements of order k for the velocity, piecewise polynomials of degree k for the pressure, and continuous piecewise polynomials of degree k+1 for an additional Lagrange multiplier given by the trace of the pressure on the Neumann boundary. Note that the two ways of writing the continuous formulation suggest accordingly two different methods for solving the discrete schemes. Next, we derive a reliable and efficient residualbased a posteriori error estimator for this problem. The global inf-sup condition satisfied by the continuous formulation, Helmholtz decompositions, and the local approximation properties of the Raviart-Thomas and Cl´ement interpolation operators are the main tools for proving the reliability. In turn, inverse and discrete inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are utilized to show the efficiency. Finally, several numerical results illustrating the good performance of both methods, confirming the aforementioned properties of the estimator, and showing the behaviour of the associated adaptive algorithm, are reported.Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de ConcepciónUniversity of LausanneMinistry of Education, Youth and Sports of the Czech Republi

    An augmented mixed finite element method for 3D linear elasticity problems

    Get PDF
    AbstractIn this paper we introduce and analyze a new augmented mixed finite element method for linear elasticity problems in 3D. Our approach is an extension of a technique developed recently for plane elasticity, which is based on the introduction of consistent terms of Galerkin least-squares type. We consider non-homogeneous and homogeneous Dirichlet boundary conditions and prove that the resulting augmented variational formulations lead to strongly coercive bilinear forms. In this way, the associated Galerkin schemes become well posed for arbitrary choices of the corresponding finite element subspaces. In particular, Raviart–Thomas spaces of order 0 for the stress tensor, continuous piecewise linear elements for the displacement, and piecewise constants for the rotation can be utilized. Moreover, we show that in this case the number of unknowns behaves approximately as 9.5 times the number of elements (tetrahedrons) of the triangulation, which is cheaper, by a factor of 3, than the classical PEERS in 3D. Several numerical results illustrating the good performance of the augmented schemes are provided

    A priori error analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem

    Get PDF
    We introduce and analyze a fully-mixed finite element method for a fluid-solid interaction problem in 2D. The model consists of an elastic body which is subject to a given incident wave that travels in the fluid surrounding it. Actually, the fluid is supposed to occupy an annular region, and hence a Robin boundary condition imitating the behavior of the scattered field at infinity is imposed on its exterior boundary, which is located far from the obstacle. The media are governed by the elastodynamic and acoustic equations in time-harmonic regime, respectively, and the transmission conditions are given by the equilibrium of forces and the equality of the corresponding normal displacements. We first apply dual-mixed approaches in both domains, and then employ the governing equations to eliminate the displacement u of the solid and the pressure p of the fluid. In addition, since both transmission conditions become essential, they are enforced weakly by means of two suitable Lagrange multipliers. As a consequence, the Cauchy stress tensor and the rotation of the solid, together with the gradient of p and the traces of u and p on the boundary of the fluid, constitute the unknowns of the coupled problem. Next, we show that suitable decompositions of the spaces to which the stress and the gradient of p belong, allow the application of the Babuška–Brezzi theory and the Fredholm alternative for analyzing the solvability of the resulting continuous formulation. The unknowns of the solid and the fluid are then approximated by a conforming Galerkin scheme defined in terms of PEERS elements in the solid, Raviart–Thomas of lowest order in the fluid, and continuous piecewise linear functions on the boundary. Then, the analysis of the discrete method relies on a stable decomposition of the corresponding finite element spaces and also on a classical result on projection methods for Fredholm operators of index zero. Finally, some numerical results illustrating the theory are presented

    A new primal-mixed finite element method for the linear elasticity problem

    Get PDF
    We introduced a new augmented variational formulation for the elasticity problem in the plane that involves four unknowns, namely, the displacement, the stress tensor, the strain tensor of small deformations and the pressure. We proved that this problem is well posed for appropriate values of a stabilization parameter. We also gave sufficient conditions for the well posedness of the corresponding Galerkin scheme, and detailed concrete examples of discrete spaces satisfying these conditions. We provided error estimates for these cases

    An augmented mixed finite element method for the Navier-Stokes equations with variable viscosity

    Get PDF
    A new mixed variational formulation for the Navier–Stokes equations with constant density and variable viscosity depending nonlinearly on the gradient of velocity, is proposed and analyzed here. Our approach employs a technique previously applied to the stationary Boussinesq problem and to the Navier-Stokes equations with constant viscosity, which consists firstly of the introduction of a modified pseudostress tensor involving the diffusive and convective terms, and the pressure. Next, by using an equivalent statement suggested by the incompressibility condition, the pressure is eliminated, and in order to handle the nonlinear viscosity, the gradient of velocity is incorporated as an auxiliary unknown. Furthermore, since the convective term forces the velocity to live in a smaller space than usual, we overcome this difficulty by augmenting the variational formulation with suitable Galerkin-type terms arising from the constitutive and equilibrium equations, the aforementioned relation defining the additional unknown, and the Dirichlet boundary condition. The resulting augmented scheme is then written equivalently as a fixed point equation, and hence the well-known Schauder and Banach theorems, combined with classical results on bijective monotone operators, are applied to prove the unique solvability of the continuous and discrete systems. No discrete inf-sup conditions are required for the well-posedness of the Galerkin scheme, and hence arbitrary finite element subspaces of the respective continuous spaces can be utilized. In particular, given an integer k ≥ 0, piecewise polynomials of degree ≤ k for the gradient of velocity, Raviart-Thomas spaces of order k for the pseudostress, and continuous piecewise polynomials of degree ≤ k + 1 for the velocity, constitute feasible choices. Finally, optimal a priori error estimates are derived, and several numerical results illustrating the good performance of the augmented mixed finite element method and confirming the theoretical rates of convergence are reported.Comisión Nacional de Investigación Científica y Tecnológica (Chile)Universidad del Bío-BíoMinistry of Education, Youth and Sports of the Czech Republi

    A conforming mixed flnite element method for the coupling of fluid flow with porous media flow

    No full text
    We consider a porous media entirely enclosed within a fluid region, and present a well posed conforming mixed flnite element method for the corresponding coupled problem. The interface conditions refer to mass conservation, balance of normal forces, and the Beavers-Joseph-Safiman law, which yields the introduction of the trace of the porous media pressure as a suitable Lagrange multiplier. The flnite element subspaces deflning the discrete formulation employ Bernardi-Raugel and Raviart-Thomas elements for the velocities, piecewise constants for the pressures, and continuous piecewise linear elements for the Lagrange multiplier. We show stability, convergence, and a priori error estimates for the associated Galerkin scheme. Finally, we provide several numerical results illustrating the good performance of the method and conflrming the theoretical rates of convergence

    Un método de elementos finitos mixtos para un problema de interacción sólido–fluido

    No full text
    En este trabajo consideramos un sólido elástico lineal e isótropo, rodeado de un fluido perfecto compresible, sobre el que incide una onda acústica armónica. Nuestro propósito es presentar un esquema numérico para determinar tanto la respuesta en el sólido como la distribución de ondas acústicas en el fluido linealizado. En el sólido utilizamos una formulación variacional mixta de la que, posteriormente, eliminamos el campo de desplazamientos. Así, las únicas incógnitas en el sólido son los campos de tensiones y de rotaciones. Esta formulación mixta se acopla, mediante dos condiciones de transmisión (una de equilibrio y otra de continuidad en desplazamientos) sobre la frontera húmeda, con la ecuación de Helmholtz que satisface la presión sobre el medio acústico. Para definir el correspondiente esquema discreto utilizamos elementos PEERS en el sólido y elementos finitos de Lagrange de primer orden en el dominio acústico. Finalmente, ilustramos las propiedades de convergencia del esquema propuesto con algunos experimentos numéricos
    corecore